

Spring-applied brake BFK457

Compact and easily fitted 0.12 – 125 Nm

We set the standards

The INTORQ brand stands for reliable brake solutions of the highest standard. Whether in cranes, wind turbines or lift systems – INTORQ products are used in the most diverse of applications. Rely on us to create the right solution for your drive – individually and reliably.

With its high number of variants, INTORQ's range of modular products is used in many motors and geared motors and has set standards worldwide. With the establishment of facilities in Shanghai and Atlanta, we have also consistently expanded our international presence. So wherever you are in the world, our network of sales and service staff is always close at hand to support you.

INTORQ at a glance

- Electromagnetic brakes and clutches
- I Configurable standard solutions and custom-made solutions
- Development and production centred in Aerzen
- I Fast delivery times worldwide thanks to production sites in Shanghai und Atlanta
- 45 million euros a year sales volume
- 800,000 units a year
- 10,000 square metres production area
- 220 employees
- I Market leader with 63 sales partners in 49 countries

INTORQ

BFK457 - compact and easily fitted

Often, the brake is only required to perform its basic function. The BFK457 is ideal for these situations. The speed of fitting with integral fixing screws and fixed air gap make this spring-applied brake even more attractive.

Thanks to the quality standards which we apply to research and development, production and assembly, the INTORQ BFK457 spring-applied brakes meet the highest demands. These electromagnetically released spring-applied brakes can be used wherever rapid deceleration of moving masses or controlled holding of masses is required.

Since the braking force comes from pressure springs, the braking torque, which is generated by friction, is available when no current is applied – even in the event of a mains failure. The brake is released electromagnetically.

Applications

- I General engineering
- I Engine construction
- I Vehicles for the disabled
- Automation technology
- Sport and recreation
- Rotary indexing technology
- Industrial trucks
- Hoists
- I Materials handling technology
- Wood working machines

Sizes and properties

Sizes 01/02/03/04/05

- Braking torques: 0.12-4 Nm
- I Compact: Fully assembled with rotor and flange
- I Can be mounted on both sides
- I Hand release available as an option

Sizes 06/08/10/12/14/16

- Braking torques: 4-125 Nm
- Emergency Hand release
- Designs:

Compact: Fully assembled with rotor and flange Basic: Stator complete with rotor

I Hand release available as an option

Properties for all sizes

- Standard voltages 24 V DC and 205 V DC (other voltages on request)
- Temperature class F (155°C)
- Compact design with flange for small overall dimensions
- I Easy assembly by means of integrated fixing screws
- I No fixed bearing is required on the brake

Compact, sizes 01 and 02

Compact, sizes 03, 04, 05

Compact, sizes 06 - 16

Basic, sizes 06 - 16

Hand release available as an option

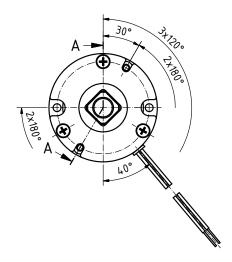
Noise-reduced as a double spring-applied brake <50dB(A)

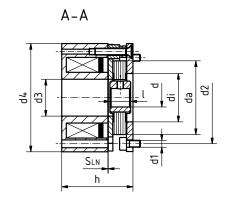
Contents

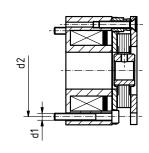
Product information	4
List of abbreviations	5
Technical data	
Sizes 01 and 02	6
Sizes 03 - 05	7
Sizes 06 - 16 Compact	8
Sizes 06 - 16 Basic	10
Sizes 06 - 16 low-noise design	12
Overview	14

List of abbreviations

P _N	[W]	Rated coil power at rated voltage and 20°C	S_{HL}	[mm]	Hand-release air gap, setting dimension
U_N	[V DC]	Rated coil voltage			of hand-release
M_{K}	[Nm]	Rated torque of the brake at a relative	t ₁	[s]	Engagement time, the total of the
		speed of 100 r/min			reaction delay and torque rise time
Δn_0	[r/min]	Initial relative speed of the brake			$t_1 = t_{11} + t_{12}$
Q	[J]	Heat/energy	t ₂	[s]	Disengagement time, time from switching
Q_{E}	[J]	Maximum permissible friction work per			the stator until the torque has reduced
		switching cycle, thermal rating of the brake			to 0.1 M _K
Q _{smax}	, [J]	maximum permissible friction work during	t ₃	[s]	Slipping time to standstill (after t ₁₁)
		cyclic switching, depending on the	t ₁₁	[s]	Delay time when connecting,
		operating frequency			time from disconnecting the voltage until
Sh	[1/h]	Operating frequency, the number of			the torque begins to rise
		repeated operations per unit time	t ₁₂	[s]	Rise time of braking torque, time from
Shmax	[1/h]	Maximum permissible operating frequency,			beginning of rise of torque until braking
		depending on the friction work per operation			torque is reached
S _{LN}	[mm]	Rated air gap			

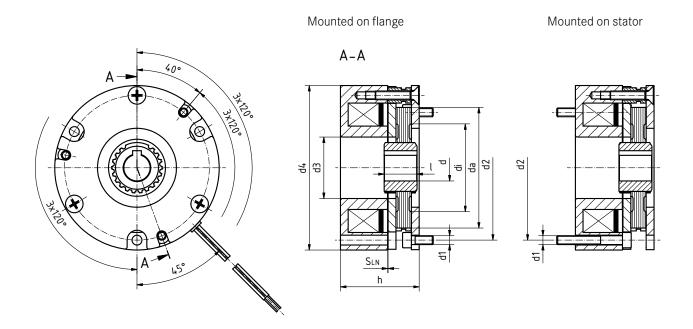

Spring-applied brake BFK457-01...05


Sizes 01 and 02


(Size 02 also available with hand release)

Mounted on flange

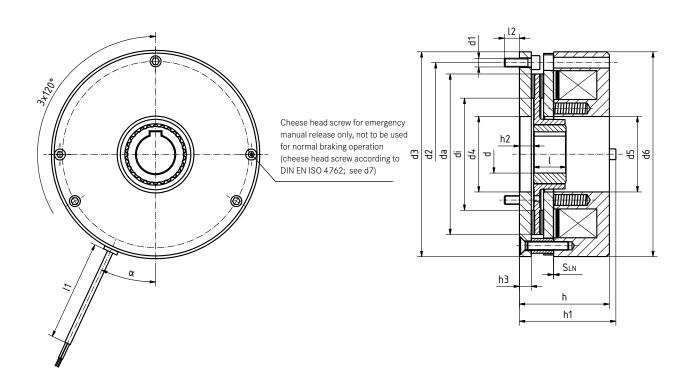
Mounted on stator


Size	M _K [Nm]	M _{Kmax} [Nm]	P _N [W]	d ^{H7(2)}	d1	d2	d3	d4	da	di	h	I	S _{LN} ⁽⁴⁾	S _{L max at} M _k	S _{L max at} M _{kmax}	m [Kg]
01	0,12	0,24	5	5(1) /6(1)	2xM2,5	32	13,5	37	25	18	31,3	9	0,1+0,08/-0,05	0,35	0,23	0,2
02	0,25	0,5	6,6	6(1)/7(1)/8(1)	2xM3	40	16	47	32	21	31	12	0,1+0,08/-0,05	0,35	0,23	0,25
03	0,5	1,0	9	6/7/8/9/10	3xM3	48	19	56	38,5	30	31,8	15	0,15 ±0,1	0,4	0,3	0,4
04	1	2,0	11,5	6/7/8/9/10	3xM3	58	24	65	47,5	35	33,8	15	0,15 ±0,1	0,4	0,3	0,55
05	2	4,0	13	8/10/11/12/15 ⁽³⁾	3xM4	66	28	75	55	40	35,9	15	0,15 ±0,1	0,4	0,3	0,8

- [1] Without keyway
- (2) Standard keyway in accordance with DIN 6885/1-P9
- I $^{(3)}$ \varnothing 15mm, keyway in accordance with DIN 6885/3-P9
- (4) Minimum air gap, the actual value is determined by the sum tolerances of the individual components
- I M $_{K}$: Rated torque of the brake in Nm, based on Δn = 100 rpm
- Caution!: The braking torque depends on the speed
- M_{Kmax}: Holding brake with emergency stop

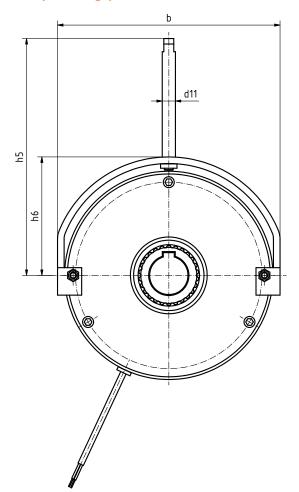
- Standard voltages: 24 V DC and 205 V DC, other voltages on request
- Standard keyway according to DIN 6885/1-P9
- Length of connecting cable: 400 mm
- All dimensions in mm

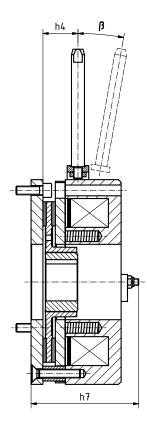
Sizes 03 to 05


(also available with hand release)

Size	M _K	Max. speed n _{max}	Max. permissible friction work per switching cycle Q_E	Transition operating frequency S _{hue}	Operating rated torque DC switchi		rith standard	Release	Moment of inertia of rotor
	[Nm]	[rmin]	[1]	[1/h]	t ₁₁	t ₁₂	t ₁	t ₂	[kgcm²]
01	0.12	5000	200	160	2	9	11	17	0.00254
02	0.25	5000	400	125	3	5	8	17	0.01
03	0.5	5000	800	100	5	7.5	12.5	18	0.021
04	1	5000	1200	90	9	9	18	23	0.058
05	2	5000	1800	80	10	16	26	35	0.105

Spring-applied brake BFK457-06...16


Compact design, fully assembled with rotor and flange



Size	M_K [Nm]	M _{Kmax} [Nm]	P _N [W]	b	d J7 spec. ⁽¹⁾	dH7 standard ⁽²⁾	d1	d2	d3	d4	d5	d6	d7	d11	da	di
06	4	6	20	90	10	11/12/14/15	3xM4	72	84	31	31	84	M4x30	8	60	40
08	8	12	25	108	10	11/12/14/15/20	3xM5	90	102	42	41.5	102	M5x35	8	77	57
10	16	23	30	137	10	15/20	3xM6	112	130	44	44	130	M5x40	10	95	66
12	32	46	40	157	14	20/25	3XM6	132	150	52	52	150	M5x45	10	115	70
14	60	95	50	174	14	20/25/30	3XM8	145	165	55	60	165	M6x55	12	124	80
16	80	125	55	203	15	25/30/35/38 ⁽³⁾	3xM8	170	190	70	70	190	M6x60	12	149	104

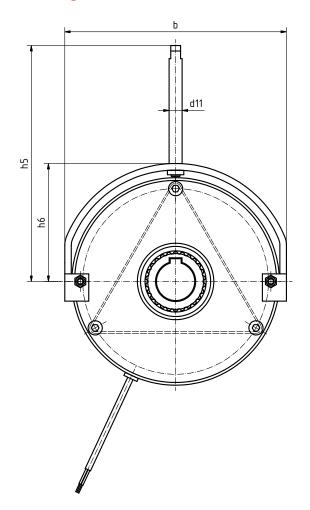
M _K	Max. speed n _{max}	Max. permissible friction work per switching cycle	Transition operating frequency	rated torqu	ie and S _{LN N}			Moment of inertia of rotor
		QE	S _{hue}	DC switchi	ng		Release	
[Nm]	[rpm]	[נ]	[h-1]	t ₁₁	t ₁₂	t ₁	t ₂	[kgcm ²]
4	6000	3000	79	29	19	48	37	0.13
8	5000	7500	50	60	35	95	42	0.45
16	4000	12000	40	35	60	95	100	2.00
32	3600	24000	30	45	53	98	135	4.50
60	3600	30000	28	50	57	107	240	6.30
80	3600	36000	27	71	50	121	275	15.00
	[Nm] 4 8 16 32 60	nmax [Nm] [rpm]	nmax work per switching cycle QE [Nm] [rpm] [J] 4 6000 3000 8 5000 7500 16 4000 12000 32 3600 24000 60 3600 30000	nmax work per switching cycle QE operating frequency Shue [Nm] [rpm] [J] [h-1] 4 6000 3000 79 8 5000 7500 50 16 4000 12000 40 32 3600 24000 30 60 3600 30000 28	nmax work per switching cycle QE operating frequency Shue rated torque DC switching cycle QE [Nm] [rpm] [J] [h-1] t ₁₁ 4 6000 3000 79 29 8 5000 7500 50 60 16 4000 12000 40 35 32 3600 24000 30 45 60 3600 30000 28 50	nmax work per switching cycle QE operating frequency Shue rated torque and SLN No DC switching [Nm] [rpm] [J] [h⁻¹] t₁₁ t₁₂ 4 6000 3000 79 29 19 8 5000 7500 50 60 35 16 4000 12000 40 35 60 32 3600 24000 30 45 53 60 3600 30000 28 50 57	nmax work per switching cycle QE operating frequency Shue rated torque and SLN Nenn DC switching [Nm] [rpm] [J] [h-1] t ₁₁ t ₁₂ t ₁ 4 6000 3000 79 29 19 48 8 5000 7500 50 60 35 95 16 4000 12000 40 35 60 95 32 3600 24000 30 45 53 98 60 3600 30000 28 50 57 107	n_{max} work per switching cycle Q_E operating frequency S_{hue} rated torque and S_{LN-N-1} Release [Nm] [rpm] [J] $[h^{-1}]$ t_{11} t_{12} t_{1} t_{2} 4 6000 3000 79 29 19 48 37 8 5000 7500 50 60 35 95 42 16 4000 12000 40 35 60 95 100 32 3600 24000 30 45 53 98 135 60 3600 30000 28 50 57 107 240

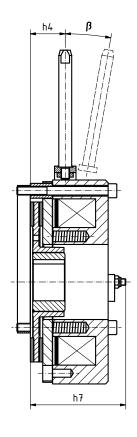
Compact design, with hand release

Size	h	h1	h2	h3	h4	h5	h6	h7	I	l1	12 ⁽⁴⁾	S _{LN} ± 0.1	S _{Lmax} at M _K	S _{Lmax} at M _{Kmax}	α	β	m [kg]
06	41.3	45.3	7	6	15.8	107	49	49.7	18	400	6	0.2	0.6	0.4	25°	10°	1.1
08	49.8	54.8	8.5	7	16.3	118	59	57.1	20	400	9	0.2	0.6	0.45	25°	10°	1.9
10	56.4	61.5	10	8	27.4	142	74	65.2	20	400	12	0.3	0.7	0.5	25°	10°	3.8
12	62.4	67.4	10	8	29.4	162	84	71.2	25	400	12	0.3	0.8	0.5	25°	10°	5.7
14	77.3	83.3	13	11	33	201	94	89	30	400	14	0.3	0.8	0.5	25°	10°	8.6
16	83.5	89.5	13.3	11	37.5	250	108	99.9	30	600	14	0.3	0.9	0.6	25°	10°	12

- [1] Pilot bored without keyway
- (2) Standard keyway in accordance with DIN 6885/1-P9
- (3) Ø38mm, keyway in accordance with DIN 6885/3-P9
- \blacksquare (4) Please contact the manufacturer if a different mounting surface made from steel is used
- Standard voltages: 24 V DC and 205 V DC, other voltages on request
- I M_K : Rated torque of the brake in Nm, based on Δn = 100 rpm
- Caution!: The braking torque depends on the speed
- $\label{eq:MKmax}$ Holding brake with emergency stop
- Dimensions in mm

Spring-applied brake BFK457-06...16

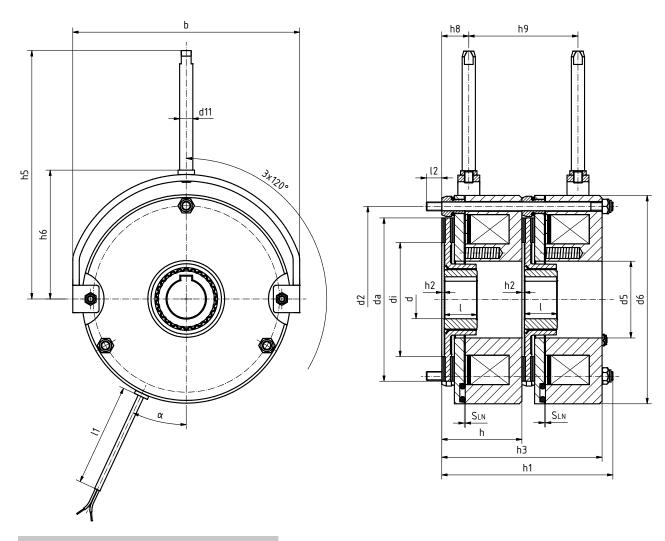

Basic design: Stator complete with rotor



Size	M _K [Nm]	M _{Kmax} [Nm]	P _N [W]	b	dJ7 spec. ⁽¹⁾	dH7 standard ⁽²⁾	d1	d2	d5	d6	d7	d11	da	di
06	4	6	20	90	10	11/12/14/15	3xM4	72	31	84	M4x30	8	60	40
08	8	12	25	108	10	11/12/14/15/20	3xM5	90	41.5	102	M5x35	8	77	57
10	16	23	30	137	10	15/20	3xM6	112	44	130	M5x40	10	95	66
12	32	46	40	157	14	20/25	3XM6	132	52	150	M5x45	10	115	70
14	60	95	50	174	14	20/25/30	3XM8	145	60	165	M6x55	12	124	80
16	80	125	55	203	15	25/30/35/38	3xM8	170	70	190	M6x60	12	149	104

Size	M _K	Max. speed n _{max}	Max. permissible friction work per switching cycle Q _E	Transition operating frequency S _{hue}		ue and S _{LN N}	vith standard	Release	Moment of inertia of rotor
	[Nm]	[rpm]	[J]	[h-1]	t ₁₁	t ₁₂	t ₁	t ₂	[kgcm²]
06	4	6000	3000	79	29	19	48	37	0.13
08	8	5000	7500	50	60	35	95	42	0.45
10	16	4000	12000	40	35	60	95	100	2.00
12	32	3600	24000	30	45	53	98	135	4.50
14	60	3600	30000	28	50	57	107	240	6.30
16	80	3600	36000	27	71	50	121	275	15.00

Basic design with hand release



Size	h	h1	h2	h4	h5	h6	h7	I	l1	12 ⁽⁴⁾ ± 0.1	S _{LN} at M _K	S _{Lmax} at M _{Kmax}	S _{Lmax}	α	$oldsymbol{eta}_{ ext{[kg]}}$	m
06	35.3	39.3	1	15.8	107	49	43.7	18	400	9.7	0.2	0.6	0.4	25°	10°	0.9
08	42.8	47.8	1.5	16.3	118	59	50.1	20	400	12.2	0.2	0.6	0.45	25°	10°	1.5
10	48.4	54.5	2	27.4	142	74	57.2	20	400	11.5	0.3	0.7	0.5	25°	10°	3
12	54.4	60.4	2	29.4	162	84	63.2	25	400	11	0.3	0.8	0.5	25°	10°	4.7
14	66.3	74.3	2	33	201	94	78	30	400	14	0.3	0.8	0.5	25°	10°	7.1
16	72.5	80.5	2.25	37.5	250	108	88.9	30	600	12.5	0.3	0.9	0.6	25°	10°	10

- [1] Pilot bored without keyway
- (2) Standard keyway in accordance with DIN 6885/1-P9
- (3) Ø38mm, keyway in accordance with DIN 6885/3-P9
- \blacksquare (4) Please contact the manufacturer if a different mounting surface made from steel is used
- Standard voltages: 24 V DC and 205 V DC, other voltages on request
- I M_K : Rated torque of the brake in Nm, based on Δn = 100 rpm
- Caution!: The braking torque depends on the speed
- lacksquare M_{Kmax} : Holding brake with emergency stop
- Dimensions in mm

Double spring-applied brake BFK457-06...16

Low-noise design < 50 dbA

Features double spring-applied brake

- Basic design without flange
- Noise-reduced armature plate

- Noise-reduced aluminium rotor
- The brake is delivered in parts

Size	M_K [Nm]	P _N [W]	b	d J7 spec. (1)	dH7 standard ⁽²⁾	d1	d2	d5	d6	d11	da	di	h	h1
06	2x4	20	90	10	11/12/14/15	3xM4	72	31	84	8	60	40	35.3	75.5
08	2x8	25	108	10	11/12/14/15/20	3xM5	90	41.5	102	8	77	57	42.8	90.5
10	2x16	30	137	10	15/20	3xM6	112	44	130	10	95	66	48.4	102.9
12	2x32	40	157	14	20/25	3XM6	132	52	150	10	115	70	54.4	114,7
14	2x60	50	174	14	20/25/30	3XM8	145	60	165	12	124	80	66.3	140,5
16	2x80	55	203	15	25/30/35/38 (3)	3xM8	170	70	190	12	149	104	72.5	153,1

- [1] Pilot bored without keyway
- (2) Standard keyway in accordance with DIN 6885/1-P9
- (4) Please contact the manufacturer if a different mounting surface made from steel is used
- Standard voltages: 24 V DC and 205 V DC, other voltages on request
- \blacksquare M $_{\mbox{\scriptsize K}}$: Rated torque of the brake in Nm, based on Δn = 100 rpm
- Caution!: The braking torque depends on the speed
- Dimensions in mm

General Information

INTORQ brakes are designed so that the stated rated torques are reliably attained after a short run-in operation.

Given the fluctuating properties of the organic friction linings used and changing environmental conditions, there may however be deviations from the stated braking torques. Appropriate safety factors in the design must take this into account.

An increased breakaway torque may in particular be experienced in damp conditions and with changing temperatures after long downtimes.

The braking torque should be checked when using the brake on the customer's friction surfaces. If the brake is being used solely as a holding brake without any dynamic load, the friction lining must be reactivated regularly.

h2	h3	h5	h6	h8	h9	I	l1	I2 ⁽⁴⁾	S _{LN} ± 0.1	S _{Lmax} at M _K	α	m [kg]
1	70.6	109	54	13	44	18	400	6	0.2	0.5	25°	1.9
1.5	85.6	121.7	62	12.7	63.3	20	400	9	0.2	0.5	25°	3.2
2	96.8	147	84	16	70	20	400	11	0.3	0.5	25°	6.4
2	108.8	166	93	18.3	78.4	25	400	11	0.3	0.75	25°	9.8
2	132.6	186	106	22	91.5	30	400	14	0.3	0.75	25°	14.8
2.25	145	230	120.5	24.5	100	30	600	14	0.3	0.75	25°	21.0
	1 1.5 2 2	1 70.6 1.5 85.6 2 96.8 2 108.8 2 132.6	1 70.6 109 1.5 85.6 121.7 2 96.8 147 2 108.8 166 2 132.6 186	1 70.6 109 54 1.5 85.6 121.7 62 2 96.8 147 84 2 108.8 166 93 2 132.6 186 106	1 70.6 109 54 13 1.5 85.6 121.7 62 12.7 2 96.8 147 84 16 2 108.8 166 93 18.3 2 132.6 186 106 22	1 70.6 109 54 13 44 1.5 85.6 121.7 62 12.7 63.3 2 96.8 147 84 16 70 2 108.8 166 93 18.3 78.4 2 132.6 186 106 22 91.5	1 70.6 109 54 13 44 18 1.5 85.6 121.7 62 12.7 63.3 20 2 96.8 147 84 16 70 20 2 108.8 166 93 18.3 78.4 25 2 132.6 186 106 22 91.5 30	1 70.6 109 54 13 44 18 400 1.5 85.6 121.7 62 12.7 63.3 20 400 2 96.8 147 84 16 70 20 400 2 108.8 166 93 18.3 78.4 25 400 2 132.6 186 106 22 91.5 30 400	1 70.6 109 54 13 44 18 400 6 1.5 85.6 121.7 62 12.7 63.3 20 400 9 2 96.8 147 84 16 70 20 400 11 2 108.8 166 93 18.3 78.4 25 400 11 2 132.6 186 106 22 91.5 30 400 14	1 70.6 109 54 13 44 18 400 6 0.2 1.5 85.6 121.7 62 12.7 63.3 20 400 9 0.2 2 96.8 147 84 16 70 20 400 11 0.3 2 108.8 166 93 18.3 78.4 25 400 11 0.3 2 132.6 186 106 22 91.5 30 400 14 0.3	1 70.6 109 54 13 44 18 400 6 0.2 0.5 1.5 85.6 121.7 62 12.7 63.3 20 400 9 0.2 0.5 2 96.8 147 84 16 70 20 400 11 0.3 0.5 2 108.8 166 93 18.3 78.4 25 400 11 0.3 0.75 2 132.6 186 106 22 91.5 30 400 14 0.3 0.75	1 70.6 109 54 13 44 18 400 6 0.2 0.5 25* 1.5 85.6 121.7 62 12.7 63.3 20 400 9 0.2 0.5 25* 2 96.8 147 84 16 70 20 400 11 0.3 0.5 25* 2 108.8 166 93 18.3 78.4 25 400 11 0.3 0.75 25* 2 132.6 186 106 22 91.5 30 400 14 0.3 0.75 25*

Model overview

Spring-applied brake BFK457

Size □ 01 □ 02 □ 03 □ 04 □ 05

Compact: Fully assembled with rotor and flange

□ 06 □ 08 □ 10 □ 12 □ 14 □ 16

Basic: Stator with rotor

Compact: Fully assembled with rotor and flange

I Noise-reduced: Double spring-applied brake in low-noise design <50 dba

Spannung □ 24 V DC □ 205 V DC (other voltages on request)

Braking torque

01	02	03	04	05	06	08	10	12	14	16
0,12	0,25	0,5	1	2	4	8	16	32	60	80
0,24	0,5	1,0	2,0	4,0	6	12	23	46	95	125

Hand release ☐ Assembled (except size 01)

Hub ☐ Bore diameter in mm (see technical data, tables)

Setting standards in the market, worldwide

We are available to our customers at all times and in all locations. Major customers and projects are supported directly by our Key Account Sales Team at our HQ in Aerzen (Germany) or by our locations in Shanghai (China) and Atlanta (USA).

In addition to this, we work with a global network of local trading partners and cooperate with Lenze's global sales organisation.

Please send service requests directly to your local sales partner or to our HQ in Aerzen, Germany:

Tel: +49 5154 70534-444

You can find more information on our products, as well as catalogues and operating instructions available for download, on our website at www.intorg.de

INTORQ GmbH & Co. KG

Postfach 1103 D-31849 Aerzen, Germany

Wülmser Weg 5 D-31855 Aerzen, Germany

Tel: +49 5154 70534-0 Fax: +49 5154 70534-200 F-mail info@intorg.de

INTORQ (Shanghai) CO., LTD

China

No. 600, Xin Yuan Road Building No. 6 / Zone B Nan Hui District, Lingang Shanghai, China 201306

Tel: +86 21 20363810 Fax: +86 21 20363805 E-mail info@cn.intorg.com

INTORQ US INC.

USA

300 Lake Ridge Drive SE Smyrna, GA 30082, USA

Fel: +1 678 309-1155
Fax: +1 678 309-1157
F-mail info@us.intorq.con